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Summary 
API 653 Annex B Evaluation of Tank Bottom Settlement permits two methods of evaluating set-
tlement. The original method is due to Marr, et al. [1], and the newer method due to Andreani, 
et al. [2]. This paper revisits API 653 B, in response to reported problems with Marr’s method and 
in the light of the much more detailed and accurate data provided by 3D laser scanning.   

Both methods (Marr and Andreani) were originally developed for analyzing a small number of 
elevations taken at measurement stations, typically evenly spaced 16 to 32 feet apart around the 
bottom circumference.   

Both methods aim to set upper bounds on maximum curvature of vertical deflections along the 
bottom edge of the tank shell, which indirectly puts a bound on ovalization at the top of the 
tank1.  At a locally maximum deflection, curvature equals the negative second derivative of the 

out-of-plane deflection curve  u   with respect to arc length  . Marr’s method is based on 

Malik, et al. [3] who used a second divided difference approximation to the second derivative 
(their equation (2)). 

As we’ll show, the second divided difference computed from widely spaced points can substan-
tially underestimate true curvature, which accounts for the poor performance of Marr’s method 
[4]  for widely spaced measurement stations. 

 
1 See Malic, Morton, and Ruiz [3], Appendix 1, “An Estimate of the Radial Displacement of the 
Top of a Cylindrical Tank.” 
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Andreani’s method sets an upper bound on the maximum deflection in an arc bounded by zeroes 
(see Figure 5). It was calibrated against finite element analyses of single folds ranging from 20 
feet, measured across the bottom of the tank, up to the full diameter.  We re-express their upper 
bound as a bound on an asymmetric divided difference, see Equation (29).  This allowed us to 
directly compare Marr’s and Andreani’s upper bounds and we can report that Marr’s bound per-
mits much higher curvature compared to Andreani’s better calibrated bound (Table 2).  This 
raises a problem because API 653 B makes Marr’s method the gatekeeper for using Andreani’s 
method,  

“B.2.2.5.2 If … the maximum out-of-plane settlement determined in accord-
ance with B.3.2.1 [Marr’s method] is exceeded, the procedure in B.3.2.2 [An-

dreani’s method] may be used to evaluate the settlement” 

Thus API 653 B does not permit Andreani’s method to correct false negatives, occasions when 
Marr’s method fails to detect excess strain. 

Marr’s divided difference estimate of the second derivative is increasingly dominated by noise as 
spacing between measurement stations gets smaller.  To ameliorate this API 653 B suggests skip-
ping points to increase the spacing,  

“[when] the arc length L between measurement points is small. It is accepta-
ble to … only use a subset of these points spaced no further than 32 ft [apart]” 

We have found that the spacing should be 16 to 20 ft to balance bias and noise. If the spacing is 
shorter, the divided second difference is mostly noise, and if it is longer the divided difference is 
less noisy but substantially underestimates the second derivative, Figure 11.   

3D laser scanning produces a dense point-cloud of bottom edge elevations a few inches apart, 
Figure 12. This abundance of closely-spaced data permits the analyst to reduce the noise and 
bias problems associated with Marr’s method.  Our proposed Trigonometric-Fit methodology2 
fits a band-pass Fourier cosine series to the elevation data to remove rigid tilt and high fre-
quency noise, and calculates the second derivative of the Fourier series. 

The suggestion of differentiating a Fourier series fitted to the data goes as far back as 1977 [3] 
but the sparse, manually measured elevation measurements of that era were judged too noisy 
for the purpose. However, dense, accurate laser-scan data is ideal for Fourier analysis.  

 
2 Fitting a Fourier series to elevation measures was suggested in [6]. We use the series to filter 
out noise and estimate true second derivative at each perimeter point when closely spaced data 
are available. 
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Review of API 653 Annex B 
The shell of an atmospheric petroleum storage tank will experience additional bending stress at 
any point where the curvature has changed from its original equilibrium value.  API 653 B is con-
cerned with bending stresses induced by tank settlement.  This paper addresses edge settlement 
but not local interior settling. 

Rigid Settlement with Planar tilt 

In this mode, the tank settles vertically while rotating around a line in the horizontal plane (the 
strike azimuth3) (see Figure 2 panel B). Elevation at the bottom of the settled shell follows a co-
sine curve as a function of arc length along the shell bottom measured in feet clockwise from 
north.  However, rigid tilt does not change the curvature at any point on the tank shell and there-
fore does not introduce bending stress. 

 

A. Tank as originally 
installed on a level 
grade. Plan view is a 
circle. 

 

 

B. Tank after 
rigid settlement 
onto a tilted 
plane. Plan view 
is an ellipse. 

Figure 1. Tank Settlement with Rigid Tilt. 

 

 
3 Azimuth is the angle (measured clockwise from north) of a line from the center of the tank to a 
point on its circumference.  The dip azimuth points toward the lowest point on the circumfer-
ence.  Settlement is typically negative but amplitude can be positive or negative.   
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C. Elevation 
view of bottom 
edge of tilted 
tank is a cosine 
curve. 

Figure 2. Elevation of Bottom Edge after Settlement with Rigid Tilt 

Computing the Rigid Tilt Plane via Multiple Linear Regression 

Elevation (relative to the original level grade) of the tilted tank bottom at azimuth   is, 

    cosZ A s      , where (1) 

A : signed amplitude, s : signed average settlement 

 : azimuth of a point on the bottom edge (clockwise from north), 

 : phase angle, and  0A     = dip azimuth (steepest downhill direction) 

A Radius   is the slope along the dip azimuth. 

In Figure 4 we show how to use the regression tool4 in MS Excel© to estimate the tilt plane. The 
data are elevation measures (Z) taken at 16 evenly spaced stations around the base of the shell 
relative to an arbitrary reference elevation (benchmark, or datum).  The diameter of the tank is 
120 feet, so the circumference is π×120 = 377 feet. The spacing between stations is 377/16 = 
23.56 feet. Column “theta” is the number of radians clockwise from station 1; theta = 2×π×(Sta-
tion-1)/16. “cos” and “sin” are the cosines and sines of theta.  We instructed Excel to regress 
settlement on cosine and sine.  The result is, 

      ˆ 1.147 0.332 cos 0.408 sinz          

The spreadsheet converts this to a cosine with phase angle by using the trigonometric identity, 

      cos sin cosa b A         , 

 
4 PEMY Consulting provides an example calculation on github at the URL 

https://github.com/rbitip/settlement-excel-regression-too 
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where the signed amplitude is   2 2sgn 0.526A a a b     , and the phase angle is

 arctan 0.889b a   .   

Elevation along the bottom edge on the tilt-plane, Equation (1), is, 

      ˆ 1.147 0.526 cos 0.889 cosz s A             , where (2) 

s is average settlement, A is amplitude, and 0.889  radians is the phase angle measured 
counter-clockwise from the first measurement station5.  Regression residuals ˆU Z z    are called 
“out-of-plane (OOP) deflections”. 

Figure 3 (left panel) is a graph of raw elevations (Z) and the cosine model that best fits the data. 
Out-of-plane deflection at the 9th measurement station is the blue arrow in each panel. Out-of-
plane deflection, shown in the right panel, does induce bending strain, which we will examine 
next. 

 

Figure 3. Left: Excel plot of Settlement and Tilt-Plane. Right: Out-of-plane Deflection (ft). 

  

 
5 For these data, we do not know the x-y coordinates of the measurement stations. Therefore, 
the azimuth of the first measurement station is arbitrarily set to zero. 
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Tank Data Computed Values (do not enter) Regression on cos and sin. 
Station Za theta cos sin Z.fitb Uc Regression Stats Computed Parameters 

1 -1.10 0.000 1.00 0.00 -1.48 0.38 Adj R Sqr 0.558 Amplitude -0.526 inch 
2 -1.42 0.393 0.92 0.38 -1.61 0.19 Resid se 0.325 Phase  0.888 rad 
3 -1.70 0.785 0.71 0.71 -1.67 -0.03 n 16         
4 -1.73 1.178 0.38 0.92 -1.65 -0.08 Analysis of Variance Table  
5 -1.84 1.571 0.00 1.00 -1.56 -0.28 Source df SS MS F p-val 
6 -1.63 1.963 -0.38 0.92 -1.40 -0.23 Tilt 2 2.214 1.107 10.46 0.002 
7 -1.50 2.356 -0.71 0.71 -1.20 -0.30 Residual 13 1.376 0.106   
8 -0.80 2.749 -0.92 0.38 -1.00 0.20 Regression Coefficients  
9 0.00 3.142 -1.00 0.00 -0.82 0.82  Est se p-val 95% Conf. Int. 

10 -0.54 3.534 -0.92 -0.38 -0.68 0.14 Intercept -1.147 0.081 0.000 -1.32 -0.97 
11 -0.97 3.927 -0.71 -0.71 -0.62 -0.35 cos(theta) -0.332 0.115 0.006 -0.58 -0.08 
12 -0.90 4.320 -0.38 -0.92 -0.64 -0.26 sin(theta) -0.408 0.115 0.002 -0.66 -0.16 
13 -0.80 4.712 0.00 -1.00 -0.74 -0.06 Definitions 

a) Z: elevation of tank bottom relative to original grade 
b) Z.fit: best-fit tilt plane 
c) U = (Z – Z.fit):  out-of-plane deflection 

14 -1.05 5.105 0.38 -0.92 -0.90 -0.15 
15 -1.20 5.498 0.71 -0.71 -1.09 -0.11 
16 -1.17 5.890 0.92 -0.38 -1.30 0.13 

Figure 4. Planar tilt for Andreani’s6 example 2. The complement of the p-value, 1-p = 0.998, is 
the analyst’s confidence7 in saying “the tilt angle is not zero.” 

“Validity” of the tilt-plane: role of adjusted R2 and p value: 

Adjusted R2 is a measure of how much of the total variance of the raw elevations is accounted 
for by the tilt-plane.  The tilt-plane analysis in Figure 3 had adj R2 = 0.558, meaning that the sinus-
oidal variation of the tilt plane around the bottom of the tank accounted for 55.8% of the variance 
of the raw elevations. The remaining 44.2% is due to noise and higher-order out-of-plane warp-
ing.  Contrary to API 653 B8, adjusted R2 is not a test of whether the tilt-plane is “valid”; that is 
the job of the p-value. For the case of the tilt-plane analysis in Figure 3, the p-value was 0.002, 

 
6 The data in Figure 4 (Andreani et al.’s Example 2 in [2]) are 16 equally-spaced settlement meas-
urements around the perimeter of a 120 x 40 foot (Diameter x Height) floating roof tank.  
7 Confidence and its Bayesian analogue, credibility, are complicated topics.  Saying “I am 99.8% 
confident that the bottom is tilted,” means, “if there were no real tilt, then there is only 0.2% 
probability that the estimated tilt will be this big.” 
8 API 653 Paragraph B.2.2.4 e) wrongly states, “[a] cosine curve is only considered valid … if the 
value of R2 is greater than or equal to 0.9.” 
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which indicates that the tilt plane is highly statistically significant (highly unlikely to be a noise 
artifact). Conventionally p-values below 0.05 are considered statistically significant9.   

API Differential Settlement Analysis 
The current authoritative resource for large assessing flat bottom tank differential settlement is 
API 653 Annex B “Evaluation of Tank Bottom Settlement”. Differential settlement may be local 
or global bulges and dishing, or settlement near the shell that deviates from the cosine curve. 
Many researchers have contributed to the settlement criteria used today. While local and global 
bulges and dishing can be analyzed by simplified models such as those given in stress analysis 
textbooks, differential settlement has defied even approximate solutions until recently. API 653 
Annex B offers two of those approximate methods. However, these should be viewed as screen-
ing methods that identify possible areas of excess stress needing follow-up.  Ultimately, finite 
element analysis should be considered the gold standard. 

Overview of API 653 Annex B Methods 

API 653 5th Edition, Annex B, describes two methods for analyzing out-of-plane settlements and 
determining whether they are within allowable bounds.  

The two methods follow the same general procedure: 

1. For given settlement data, calculate the regular 1-mode cosine curve fit. 
2. Calculate out-of-plane deflections, U , measured in in the same units as tank circumfer-

ence (either feet or meters), by subtracting the cosine curve fit from the settlement data 
( ˆi i iU Z z  , where Z is the observed settlement data (feet), ẑ  is the cosine curve fit, and 

the subscript i denotes that these are their values for measurement station i). 
3. Three-point out-of-plane settlement values, iS , are computed at each station and are 

compared to a maximum permitted value, maxS  

The first of these, Marr’s method [1] is described in API 653 B.2.2.4. In this method, the out-of-
plane deflection ( iU  for data point i) is used to calculate the out-of-plane settlement ( iS ).  As 

described in API 653 figure B.3, the out-of-plane settlement at point i is 

 1 1

1 1

2 2i i i iS U U U 
    
 

, (3) 

 
9 But note that a control variable, that corrects causal variables for bias, is customarily kept in the 
model if its p-value is less than 0.15. Planar tilt is an example of a control variable: it does not 
cause stress but it can bias the estimates of warping modes that do cause stress. 
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The maximum permissible out-of-plane settlement (in feet) for Marr’s method, per API 653 
B.3.2.1, is10 

 
 

2

,

11 ( )

2max ft

L Y
S

E H




 
 (4) 

Where,  

L  is arc length between (evenly spaced) measurement stations, in feet, 

Y  (or y ) is the yield strength of the shell material, assumed to be  

E is Young’s Modulus of the shell material, and 

H is the tank height, in feet. 

The second of these two, Andreani’s method [2], computes out-of-plane settlement differently.  
A settlement arc is defined as the interval between two successive interpolated zeroes of the 
graph of out-of-plane deflections, U. Out-of-plane settlement iS is the maximum vertical deflec-

tion (in inches) between the ith pair of zeroes, as in Figure 5. 

 

Figure 5. Andreani's Measure of Out-of-plane Settlement (inches). 

Maximum permitted out-of-plane settlement (in inches) is,  

 , ,min , 4.0 max in arc ft

D Y
S K S in

H E
   
 

 (5) 

 
10 This is one-half the “permissible OOP settlement” proposed in Marr, et al. [4]; presumably, 
dividing by 2 was intended as as an ad-hoc safety factor. 
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Where, 
K  is a tabulated value from Table 1, 

,arc ftS  = settlement arc length in feet (for example, L4 in Figure 5) 

D  = tank diameter, ft 
H  = tank height, ft 
Y  = yield strength, psi 
E  = Young’s Modulus, psi 

 

Table 1. API 653 K table from API 653, Section B.3.2.2 

 

Digression: The tilt plane should always be subtracted from raw settlement values 
In saying this, we directly contradict the advice in API 653 [5], paragraph B.2.2.4:  

In many cases, the out-of-plane settlement may be concentrated in one or more 
areas. In such cases, the least-squares fit approach may under predict the local 
out-of-plane settlement and is not conservative. In these cases, R2 will typically 
be less than 0.9, and more rigorous curve-fitting procedures should be consid-
ered. Alternatively, the settlement may not indicate a well-defined rigid tilt plane 
and the procedure in B.2.2.5 should be considered… 

This suggestion is wrong and should be ignored; it comes from a misunderstanding of the sta-
tistic R2, a number in the interval [0,1] described as “the proportion of variance explained by 
the (planar tilt) model”.  The misunderstanding is the claim that a model is not valid unless R2 
is very high, say 0.9 or above.  This is simply not true for several reasons. First, the preferred 
criterion is adjusted R2. Second, the data may be inherently noisy so that no valid model could 
have extremely high R2. Third, candidate exploratory variables are selected solely for their abil-
ity to increase adjusted R2. Large R2 is not required and may be impossible due to measurement 
noise.  
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Second Derivative Interpretation of Marr and Andreani Criteria 
API felt in the 1990s that there was sufficient research to put limiting rules into API 653 to cover 
differential settlement. The first rule is based on a paper by Marr et al. [1]. Marr and his co-
authors summarized previous work going back to at least the 1960s and concluded that the work 
of Malik et al. [3] best addressed differential settlement.  

Malik, et al. [3], showed11 that, in theory, ovalizing radial displacement w at the top of a tank 
shell is directly proportional to the second derivative of out-of-plane deflection function u at the 
bottom of the shell, 

    2

22

d uD H
w

d


  





 (6) 

where   is the “hoop coordinate”; i.e., the arc-length (azimuth times radius) measured in feet 
clockwise from north.  

Therefore, it is no surprise that both Marr’s and Andreani’s criteria can be expressed in terms of 
upper bounds on approximations of the second derivative of the out-of-plane deflection curve. 

 

Comparison of Marr and Andreani in Terms of Bounding the Second Derivative 

Observed out-of-plane deflection iU , measured in feet at hoop coordinate i , is true deflection 

plus noise, 

  i i iU u e   (7) 

Bending strain and ovalization are proportional to true curvature  , which is the inverse radius 
of the tangent circle at point  , 

    
  

 3 22
1

u
u

u



 




 


 (8) 

Menger curvature, ̂ , is an approximation of true curvature. It is the inverse of the radius of the 
circle passing through three measured deflections (Figure 6),  

 
    12 3 2 23 2 1

12 23 13

2
ˆ

L U U L U U

d d d


     


 
 (9) 

 
11 They give credit to L. M. Langeveld for the original, unpublished derivation. 
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Figure 6. Data for 3-Point Curvature Estimate of a Deflected Section of Tank Shell 

In Marr’s method, measurement stations are equally spaced so 12 23L L L   and Equation (9) 

becomes12, 

 
 1 3 2

12 23 13

2
ˆ 2

U U U
L

d d d


  
  

 
 (10) 

Distance ijd  is the hypotenuse of a right triangle with base ijL  and height j iU U .  The difference 

between the base and the hypotenuse is negligible because distance between stations is on the 
order of 20 feet and out-of-plane deflections are in the range ±4”; consequently, 

 

 

 
 

 

1 3 2

12 23 13

1 3 2
2

1 3 2 2
2 2

2
ˆ 2

2
2

2

2 2
2

U U U
L

L L L

U U U
L

L L

U U U S

L L


  

  
 

  
  

 

  
   

, (11) 

where S2 is out-of-plane settlement, Equation (3), at measurement station 2. The expression  
2∙Si /L2 is a second divided difference that approximates the second derivative. 

 

12 Factor 2L in the denominator comes from 13 12 23 2L L L L    . 
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Marr’s Bound on The Second derivative 

Marr, et al. in effect, approximated the second derivative at each measurement station using 
three adjacent out-of-plane deflection measurements, 1 2 3, ,U U U  as shown in Figure 6. 

From Equations (8) and (11) we get,  

   2
1 1

2 2
ii i

i i

u LU U
S U  

 
  


, (12) 

where L is the (uniform) distance (feet) between measurement stations, and out-of-plane de-
flections, U, are measured in feet.   

Marr’s original criterion13 for a safe amount of out-of-plane deflection was, 

 
2

11 f
i

L
S

H E


 


, (13) 

where, 

L is arc length between (evenly spaced) measurement points, in feet, 

y  is the yield strength of the shell material, 36 ksi for A36 steel, 

E is Young’s Modulus of the shell material, 29,000 ksi for A36 steel, and 
H is tank height, in feet (ft). 

However API 653, without explanation but possibly as a safety factor of 2, used the criterion, 

 
2

max,

11

2
f

i ft

L
S S

H E

 
 

 
 (14) 

Which, via Equation (12), gives what we’ll call Marr’s bound on the second derivative14, 

   max,11 2y
i ftu D

H E


   


 , (15) 

 
13 Equation 11 in reference [1]. 
14 The left side unit is ft-1 and, on the right, the constant 11 is unitless as is yield strength over 
Young’s modulus so the net unit is also ft-1.  
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When deflections are measured in inches, the second derivative has units inches/foot2, and 
Marr’s bound becomes, 

   max,12 11 2y
i inu D

H E


    


  (16) 

 

Adapting Marr’s Criterion to Laser-Scan Data 

When stations are closer than 8 feet, API 653 B.2.2.4 says,  

… It is acceptable to [use] all measurement points to develop the optimum co-
sine curve, but only use a subset of these points spaced no further than 32 ft (8 
minimum) when calculating iS and maxS . The points used must include the points 

furthest from the optimum cosine curve. For example, if 8 points are required, 
but 16 measurements are taken, and the arc length between measurement 
points is only 15 ft, calculate the optimum cosine curve using all 16 points, but 
use only 8 points to calculate iS  

Figure 7 shows 3355 elevation measurements around the bottom edge of a 272 by 66 ft tank (D 
x H).  Following API 653’s suggestion, let’s “thin” the data to L=20 feet between measurement 
points. The circumference is 854.5 ft, so there are about 78 points per 20 feet.  

 

Figure 7. Bottom Edge Elevations in feet of a 272 x 66 ft Tank (D x H).  
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Assuming equal spacing15, we’d use every 78th point to compute S’s, amounting to 43 S’s in all. 
API says to start at the largest deviation (U) and retain every 78th point. For example, if U1 hap-
pened to be the largest, we’d use points 1, 79, 157, … 3277, and 3355.  We did this 9 more times 
with the starting point shifted by L/10 (in this case shifted by a count of 8). So, the first shift uses 
points 9, 89, … ,3285, 3363, etc.  

Figure 8 shows what that looks like. As a bonus we get an impression of the influence of noise 
and a “vote” on whether the deflection at 600 feet really exceeds the settlement limit Smax. Only 
two out of 10 shifts exceeds Smax,ft so, informally, there’s a 20% chance that there is excess out-
of-plane settlement.  

A weakness of Marr’s method is that it is highly sensitive to L, the distance between stations, as 
illustrated in Figure 9.  The settlement limit (the red dotted line) gets larger as the distance (L) 
between stations increases. Later we’ll show that this is caused by bias: the second divided dif-
ference underestimates the second derivative and the underestimate becomes worse as distance 
L between points gets bigger (see Figure 11). 

 

Figure 8. Marr’s method with L=20 for laser-scan data. 

 

 
15 When spacing is unequal or has gaps points should be selected by distance rather than count.   
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Figure 9. Marr’s method with L = 16 feet (left) and 24 feet (right). Note that Smax is off the 
chart when L=24 feet. 

Why Marr’s Method fails for wide spacing, L. 

Marr’s method assumes that the divided second difference of the deflection function is a good 
approximation of its second derivative. The deflection function u is periodic and therefore can be 
represented as a Fourier series, 

  
max

2

cos
k

k k
k

u A k
R




     
 

   (17) 

The second derivative can be computed term by term, 

    
max

2

2

cos
k

k k
k

u k R A k
R




        
 

   (18) 

where  is the arc length (ft) clockwise from north, R is the radius, R  is the arc length in radi-
ans, k is the period of each term, (cycles per circumference). Parameter Ak is the amplitude of 
that period, and k  is the phase angle. The maximum permitted period, kmax is selected so that 

the shortest half-wave is 20 feet16.  For the 272 ft diameter tank in Figure 7, that is, 

  max 2 20 272 40 21ft ftk D         (19) 

 
16 The “sweet spot”, balancing noise and bias for Marr’s method, is about 20 feet, and Andre-
ani’s method was calibrated for 20 foot or longer folds; i.e., settlement arcs longer than 
2*R*asin(10/R), where R is the radius of the tank. 
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There is no constant or first-order term in equation (17) because they were removed by subtract-
ing the tilt plane.  

Figure 10 shows the observed out-of-plane deflections in inches (gray), and the finite Fourier 
series (black), fitted to the data underlying Figure 8. Superimposed in red are the negative second 
derivative and Marr’s bound on the second derivative for deflections in inches, 

 max,2 12 11 1  32 0.0025
96

36

2 0006
y

inD
H E


     

 
 (20) 

 

Figure 10. Marr’s Criterion with Estimated Second Derivative. 

 

Figure 11 displays second derivatives and second divided differences17 in a region around the 
maximum out-of-plane deflection in Figure 10. The graph shows the second derivative  ˆ2d u   

and second divided difference  2 22 u   at 8 to 32 feet between stations (L). Clearly, the 

second difference severely underestimates the second derivative for wider spacing. For example, 
at 32 ft spacing the second divided difference is less than ½ of the second derivative. 

 
17 See the sentence after Equation (11) for a definition of second divided difference. 
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Figure 11. Second difference underestimates second derivative.  

More accurate estimation of second derivatives via trigonometric smoothing. 

We suggest estimating second derivatives by statistically fitting a finite Fourier series like Equa-
tion (17) to the observed deflections from the rigid tilt plane. Cosine terms are included only if 
they increase the model’s overall adjusted R2 using a method called forward stepwise regression. 
We analytically calculate the second derivative of the fitted Fourier series to determine the cur-
vature. We call this the Trigonometric Regression Method. In light of our analysis of estimation 
bias18 and noise sensitivity, we think that, for laser-scan data, this method is less sensitive to arc 
length than Marr’s original method. 

  
2

2

ˆ ˆˆ cosk k
k

k
u A k

R R




            
   

   (21) 

Applying Equation (15), we get Marr’s Criterion with Estimated Derivative for deflections meas-
ured in feet, 

   max,ˆ| | 11 2y
i ftu d

H E


   


 , (22) 

or for deflections measured in inches, 

   max,ˆ| | 12 11 2y
i inu d

H E


    


  (23) 

 
18 Second derivatives of the trigonometric curve are unbiased estimates of its curvature, but the 
estimated curve itself could be smoother than the true deflection curve.  
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PEMY Consulting has developed an R application that calculates the criteria discussed in this 
chapter.  Figure 12 shows the trigonometric regression method applied to the data underlying 
Figure 8.  

The advantage of this method is that it is unnecessary to thin the data to arcs of length L.   

 

Figure 12. Marr’s Criterion with Estimated Second Derivative. 

The trigonometric regression method is compliant with API 653, paragraph B.2.2.4, because Marr 
et al. explicitly derived their criterion from the equivalent of our Eq. (22). 

When closely spaced observations are available, trigonometric regression should be used instead 
of three-point curvature estimates with thinning.  The trig-reg estimate of curvature is unbiased 
and less susceptible to noise. In addition, it is more precise because it uses all of the observations, 
not just three points.  
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For the data in Figure 12, there is general agreement between Marr (Figure 8), Marr with esti-
mated second derivative (Figure 11), and Andreani (Figure 13) that the maximum deflection near 
arc length 600 ft. is excessive or nearly so. 

In the next section, we demonstrate that Andreani’s method is more reliable than Marr’s method 
when the separation between stations is wider than about 20 feet.  

 

Figure 13. Andreani analysis of laser-scan data. 
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Comparison of Marr and Andreani Criteria 

Referring to Figure 5 and Equation (5), let’s define a few symbols, 
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 (24) 

Now we can interpret Andreani’s S, defined in Equation (5), as a second difference of observed 

out-of-plane settlement values U, 

      
max

max max max

2 2

2

left right

right left

S U U U

u L u u L noise

     

         (25) 

Applying the Taylor expansion we get, 

 

     

       

 
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, 
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   
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  

 

 

 (26) 

since the first derivative  maxu  vanishes at the maximum. 

Average separation between the three points is   2left rightL L L   and,  

 
 
 

22
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1
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L

L







   (27) 

where, 
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 

 (28) 

For even spacing; i.e., Lleft = Lright , we have L L   and ρ=1. 

Finally, by combining equations (5) and (26), Andreani’s criterion (in inches) is, approximately, 
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 (29) 

where K is number from Table 1. API 653 K table from API 653, Section B.3.2.2.  

Marr’s criterion for estimated second derivative (in inches) is  

   12 11 y
iu

H E


   


  (22) 

In other words, Andreani, in effect, replaced Marr’s constant multiplier, 12∙11, with a value that 
depends on diameter, average distance between the three measurement stations used to calcu-
late S, and the ratio of distances to the left and right endpoint of the arc.  

Thus, Andreani’s alternative to Marr’s multiplier is,  

 
 
 

2

2

1
' 2

1

K D
Andreani s implied multiplier

L




 
  


 (30) 

Table 2 lists Andreani’s implied multiplier for diameters between 150 and 250 feet, and 16-to-
32-foot average separation between the three measurement stations used to compute Marr’s 
deflection measure.  

Marr’s multiplier for deflections measured in inches is comparable to Andreani’s (± 10%) when 
measurement stations are equally spaced (rho=1) and 20 feet apart. For greater separations 
Marr’s multiplier is too lenient (too big) and therefore Andreani’s is the preferred method. 
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In summary, Marr’s method is too lenient when measurement stations are more than 20 feet 
apart. It will therefore have a higher rate of false negatives (failures to flag excess strain).  

        rho         
        1 0.75 0.5         
D K* Sarc.ft L Andreani implied multiplier Marr % Difference 

150 4 32 16 150 147 135 132 -13 -11 -2 
150 4 40 20 120 118 108 132 10 11 20 
150 4 48 24 100 98 90 132 28 30 38 
150 4 56 28 86 84 77 132 42 44 53 
150 4 64 32 75 74 68 132 55 56 64 
200 3.6 32 16 180 176 162 132 -31 -29 -20 
200 3.6 40 20 144 141 130 132 -9 -7 2 
200 3.6 48 24 120 118 108 132 10 11 20 
200 3.6 56 28 103 101 93 132 25 27 35 
200 3.6 64 32 90 88 81 132 38 40 48 
250 2.4 32 16 150 147 135 132 -13 -11 -2 
250 2.4 40 20 120 118 108 132 10 11 20 
250 2.4 48 24 100 98 90 132 28 30 38 
250 2.4 56 28 86 84 77 132 42 44 53 
250 2.4 64 32 75 74 68 132 55 56 64 

 

Table 2. Andreani's Curvature Bound is Tighter than Marr’s. 

Andreani’s Alternate Method  

Andreani et al. thought that the settlement data in Figure 14 did not have a “reliable” tilt plane 
because R2 = 0.617 is less than 0.90 (see Figure 4).  They appear to suggest that the analyst should 
visually identify settlement arcs instead, as in Figure 14. There is no conceptual definition of the 
term “settlement arc” but API 653 section B.2.2.5.1 does give these instructions, 

a) The actual settlement [not deflections from a tilt plane] is plotted using 
points around the tank circumference as the abscissa. 

b) An initial settlement arc length and maximum settlement is determined 
from the points on the plotted data that indicate a change in direction of set-
tlement slope [ see Figure 14 ]. 
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[Judging from Figure 14, “change in direction” appears to mean a settlement 
arc is defined by places where the slope changes sign, in other words, at local 
maxima and minima. For example, Sarc5 is bounded by local maxima at sta-
tions 2 and 10, and has a local minimum at station 6. The arc with greatest ab-
solute deflection is, for unknown reasons, not marked in API 653 Figure B4: it 
is the dotted red line in Figure 14 that runs from station 5 to station 11 with 
maximum deflection at station 9.] 

c) Additional settlement measurement points may be needed halfway be-
tween the points indicating a change in direction of the settlement slope to 
further refine the settlement arc length and location and magnitude of maxi-
mum settlement. 

d) Step c) may need to be repeated. The best estimate of the settlement arc 
length and maximum settlement shall be considered in the procedure given in 
B.3.2.2 (see Equation (5)) 

Figure 15 is our rendition of Andreani’s standard analysis of deflections from the tilt-plane. Arcs 
identified by the standard analysis (API 653 Section B.2.2.5) are shown as horizontal black arrows 
and alternate arcs identified by steps a) – d) are shown as red lines. The alternate analysis missed 
both positive-going arcs (1 and 3). 

 

 

 

Figure 14. API 653 Figure B.4. 
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Figure 15. Andreani Standard and Alternate Arcs. 

Andreani’s standard method based on deflections from the best fitting tilt plane is better cali-
brated than Marr’s method, which is subject to increasing bias as the arc length  2 L  increases. 

Andreani’s alternate method, based on identifying local maxima and minima, is demonstrably 
subjective (see the missed arc in Figure 14) and would be even more so for laser-scan data like 
Figure 13. In any case it is never necessary because it should always be permissible to work with 
deflections from a fitted tilt plane.  

Andreani’s standard method is better calibrated than Marr’s. Do not use Andreani’s alternate 
method: always use deflections (U) with the tilt plane removed. 

Comments on Differential Settlement. 

We have discussed the two differential settlement analyses sanctioned by API 653 Appendix B. 
The first, Marr’s method, is based on Euler-Bernoulli beam theory and a divided second differ-
ence estimate of the second derivative or curvature. We have shown that the second difference 
estimate can be badly biased if the distance between stations, L, is longer than 20 feet.  

We conclude that Marr’s method is generally unreliable but that it can be made more reliable by 
replacing Marr’s strain estimate (S) with the analytical second derivative of a trigonometric fit 
(finite Fourier series). For sparce, widely-spaced data we recommend Andreani’s method.  For 
dense, closely-spaced data we recommend the Trig-Fit Fourier series method in in lieu of using 
Marr’s method. 

A second stress analysis method developed by Andreani, et al., is derived from finite-element 
modelling of simple folds across the tank bottom. It was calibrated to a limiting strain of 3%, 
based on the API 579 fitness for service criterion and is therefore one step closer to the gold 
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standard. Andreani’s finite element analysis looked only at single folds at different arc lengths 
but is based on a more realistic model than Marr’s method. Unlike Marr’s method, it is accurate 
over a wide range of arc lengths. 

API 653 section B.2.2.5 gives this advice: 

If … the maximum out-of-plane settlement determined in accordance with 
B.3.2.1 (Marr’s method) is exceeded, the procedures given in this section (An-

dreani’s method) may be used in lieu of more rigorous analysis or repair 

We have demonstrated that this advice has it backward: Marr’s method is generally too lenient 
and will sometimes miss overstressed areas that would be identified by Andreani’s method.  In-
stead, we recommend that a settlement analysis consist of 1) Andreani’s standard analysis, then 
2) Marr’s analysis, if measurement stations are separated by 16 to 20 feet, and then 3) the Trig-
Reg method, when measurements are closely spaced. A tank gets a clean bill of health only if 
both Andreani’s and the Trig-reg analyses do not indicate overstress. 

All of these analyses – Marr, Andreani, and Trig-Reg – are screening tests to identify possible 
excess stress. The gold standard is finite element analysis.   
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Appendix:  
Propagation of Error & Operating Characteristics of Marr’s Method 
Effect of Measurement Error, Roughness, and Spacing on the Marr Method 

Using the “signal plus noise” model in Equation (7), observed deflection can be written as true 
deflection plus noise.  Noise consists of measurement error plus intrinsic roughness: welds, dings, 
patches, etc. Observed deflections U are true deflection plus noise,  U u e    

 

 
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  

         


    (31) 

Assuming that noise is random with standard deviation esd , the standard deviation of an out-of-

plane deflection is, 

    1 10.5 0.5 1.5i i i i esd S sd e e e sd          (32) 

Controlling false positives and false negatives requires that the noise component of iS  be much 

smaller than the critical value for S, Smax  
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Operating Characteristic: Probability of a Positive Test for Over-Strain 

If noise is Gaussian, the probability of a positive test for over-strain is, 
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 (34) 

where, SNR is the Signal to Noise Ratio, and SM is the Safety Margin; i.e., the relative distance of 
true strain μS from maximum permitted strain Smax  
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Table 3 shows the effect of SNR and SM on false positives19 and false negatives20.   

For example, if true stress is 20% below Smax (SM = 0.2) the false positive rate is 12% for SNR=6 
sigma and 27% for SNR=3 sigma, with noisy data (SNR=3) 27% of tests will be false positives and 
73% will be true negatives.  An acceptable level of false positives depends on a cost-benefit anal-
ysis of the protocol for following up an apparent positive. For another example, if true stress is 
30% above the limit, Smax, and SNR=3 sigma, there will be 18% false negatives and 82% true 
positives.  An acceptable level of false negatives depends on a cost benefit analysis of protocol 
for following up an apparent negative. 

 

Table 3. Effect of Signal-to-noise Ratio on False Positive & Negative Rates. 

Clearly it is desirable to reduce both false positive and negative rates. That requires reducing 
noise. Table 3 suggests that a signal to noise ratio at least 6 is needed to avoid excess false posi-
tives. then shows the maximum permissible noise standard deviation required to achieve given 
signal to noise ratios. We shall see that there are strategies for reducing SNR. 

Mitigating the Signal to Noise Ratio. 

Noise is a combination of intrinsic roughness21 and measurement error and probably cannot be 
reduced below 0.25 inch. Table 4 indicates that 5 sigma or better SNR is out of reach for L less 

 
19 A false positive occurs if the true deflection, μS is less than Smax but observed deflection, S, is 
above Smax 
20 False negatives can happen when the tank is truly over the stress limit (SM <0) but observed 
stress is less than Smax. 
21 Intrinsic roughness due to overlapping plates etc. is  0.25  
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than 20 feet, and apparently the bigger L is the better.  However, this is counterbalanced by 
increasing bias in the 3-point curvature estimate as L increases, see Figure 11.  

It seems, therefore that for methods based on 3-point curvature estimates, the sweet spot be-
tween noise and bias is at L = 20 feet.  We showed that there is a more sophisticated curvature 
estimate that gets around this problem if the distance between measurement stations is very 
small, as with laser-scan data.  

 H = 40 ft H = 50 ft 
 SNR SNR 

L ft 3 4 5 6 3 4 5 6 
16 0.29 0.22 0.17 0.14 0.23 0.17 0.14 0.12 
20 0.45 0.34 0.27 0.22 0.36 0.27 0.22 0.18 
24 0.65 0.49 0.39 0.32 0.52 0.39 0.31 0.26 
28 0.88 0.66 0.53 0.44 0.71 0.53 0.42 0.35 
32 1.15 0.86 0.69 0.58 0.92 0.69 0.55 0.46 
36 1.46 1.09 0.87 0.73 1.17 0.87 0.70 0.58 

Table 4. Maximum Permissible Noise Standard Deviation (inches) for Given SNR, L, and H 

Marr et al.’s K value Does Not Adjust for Bias Caused by Large L 

Marr, et al., computed lower bounds for factor K using data from 38 floating-roof and more than 
60 cone-roof tanks that had not ruptured. The logic was that the stress observed in an intact tank 
must be less than the failure stress. Rearranging equation (13) implies that for all 38 tanks (t) in 
the calibration set, 

 , 2
t t

t observed
t f

S H E
K K

L 


    (35) 

Observed K values are listed in Table 5. Marr, et al.'s Calibration Set (adapted from their Figure 
6, all dimensions in feet).Table 5 and are plotted against arc length (L) in Figure 16. The red curve 
is logically a lower bound on K because the 38 tanks had not ruptured but would have ruptured 
at some higher value of K.  
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Figure 16. Computed lower bound on K for 38 Floating-Roof tanks. 

D’Orazio and Duncan [4], pointed out that K decreases quadratically as arc length increases, as 
shown in Figure 16. They reasoned that noise standard deviation, esd , is leveraged by 2L , mak-

ing observedK  more dispersed for small L -values.  That might account for some of the decrease, 

but we have found that the true explanation is the fact that the second divided difference is a 
biased estimate of the second derivative (see Figure 11). 

In the section titled Adapting Marr’s Criterion to Laser-Scan Data, we demonstrate that the pat-
tern in Figure 16 comes from using an approximation for the second derivative and, conse-
quently, factor K should be a function of the distance L between measurement stations. 

tank Diam Height L arc S.obs K.obs tank Diam Height L arc S.obs K.obs 
1 133.5 55.1 21.0 0.0207 4.25 20 209.6 60.0 32.8 0.0191 1.75 
2 133.5 55.1 21.0 0.0193 3.95 21 209.6 60.0 32.8 0.0205 1.88 
3 133.5 55.1 21.0 0.0141 2.89 22 209.6 60.0 32.8 0.0195 1.79 
4 152.6 54.8 24.0 0.0099 1.55 23 209.6 60.0 32.8 0.0170 1.56 
5 152.6 54.8 24.0 0.0199 3.12 24 209.6 60.0 32.8 0.0130 1.19 
6 152.6 54.8 24.0 0.0208 3.26 25 209.6 60.0 32.8 0.0156 1.43 
7 80.1 42.0 25.1 0.0095 1.04 26 169.0 47.9 33.1 0.0151 1.08 
8 96.1 42.0 25.1 0.0095 1.04 27 167.3 48.6 44.0 0.0558 2.30 
9 80.1 54.1 25.1 0.0095 1.34 28 244.4 47.9 47.9 0.0087 0.30 

10 80.1 42.0 25.1 0.0064 0.70 29 67.3 39.4 52.8 0.0159 0.37 
11 315.6 72.2 30.8 0.0090 1.13 30 67.3 39.4 52.8 0.0159 0.37 
12 219.8 54.1 31.5 0.0130 1.17 31 144.4 54.1 56.4 0.0244 0.68 
13 219.8 54.1 31.5 0.0100 0.90 32 229.7 48.6 60.4 0.0180 0.39 
14 219.8 54.1 31.5 0.0100 0.90 33 229.7 48.6 60.4 0.0551 1.20 
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15 180.4 54.1 31.5 0.0170 1.52 34 229.7 48.6 60.4 0.0330 0.72 
16 209.6 60.0 32.8 0.0170 1.56 35 229.7 48.6 60.4 0.0100 0.22 
17 209.6 60.0 32.8 0.0207 1.89 36 229.7 48.6 90.2 0.0140 0.14 
18 209.6 60.0 32.8 0.0313 2.86 37 229.7 45.9 90.2 0.0400 0.37 
19 209.6 60.0 32.8 0.0345 3.16 38 139.8 48.2 109.9 0.1218 0.80 

Table 5. Marr, et al.'s Calibration Set (adapted from their Figure 6, all dimensions in feet). 

 


